Modelling and Simulation of the Impact of Ionic Defects on Perovskite Solar Cell Characteristics
Nicola Courtier a
a Department of Engineering Science, University of Oxford, United Kingdom, Parks Road, United Kingdom
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
Numerical device modelling and SIMulation of SOLar cells and Light Emitting Diodes: methodologies and applications - #SIMUSOLED
Sevilla, Spain, 2025 March 3rd - 7th
Organizers: Juan A. Anta and Sandra Jenatsch
Invited Speaker, Nicola Courtier, presentation 403
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.403
Publication date: 16th December 2024

In the last 10+ years of development, perovskite solar cells have achieved excellent efficiencies and a more gradual improvement in stability. Perovskite materials for photovoltaics are mixed electronic-ionic conductors [1]. It is therefore essential to consider the density and mobility of ionic defects in continuum-level models of perovskite-based devices, including tandem cells. Ionic defects impact both the steady-state and dynamic behaviour of perovskite cells [2] by modulating the electric field and charge carrier recombination rates.

An initial density of ionic defects is formed during cell fabrication; however studies suggest that additional defects can form during operation, under bias and illumination. Accumulation of mobile ion defects at the perovskite/transport layer interfaces results in undesirable degradation and performance loss over a timescale of hundreds of hours [3].

Improved modelling and simulation is required to understand the process of defect generation and quantify its impact on device characteristics over relevant timescales. We extend the charge-transport model that underpins our open-source IonMonger tool [4] and perform simulations to investigate the impact of defect generation and migration on perovskite solar cell performance.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info