Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.326
Publication date: 16th December 2024
Organic solar cells and organic photodetectors have recently gained much interest due to their favorable properties like abundant materials, low-cost fabrication, machanical flexibility, and spectral tunability. In this talk, I will give an overview about our recent work on organic photodetectors. In particular, I will first address results on a key working principle, the exciton separation which is challenging in organic materials due to the high binding energy. We have recently shown that high-performance organic photodetectors can be realized without a needing a donor-acceptor heterojunction for separation: single-component devices based on the small molecule organic semiconductor DCV2-5T (an oligothiophene with dicyano-vinylene endgroups) show excellent properties: Due to low dark current and high external quantum efficiency, high specific detectivities of 10E13 Jones at zero bias are achieved. The single-component DCV absorber layer forms free charges rapidly and efficiently, without the need for a heterostructure with another material. The efficient charge generation in DCV2-5T is attributed to the strong electronic overlap of molecular excitons and intermolecular CT states. Furthermore, quantum chemical simulations predict a reduced electronic coupling for highly ordered (crystalline) DCV2-5T, which demonstrates that crystalline order is not a prerequisite for good performance. The exceptional performance of single-component OPDs demonstrates a successful strategy for simplified device fabrication and enhanced stability. In a second part, I will discuss high-performance narrow-band blue organic photodetectors through intended exciton quenching, realized by fine-tuning the optical and electrical properties of hole transport layers and introducing a MoO3 doped underlayer to the device. This filterless strategy ensures a high EQE of up to 50% at 0 V in thin-film devices. Doping can further improve EQE by assisting charge carrier dissociation. Ultralow dark currents can be obtained by planar heterojunctions, leading to a record-high detectivity D* of 6.35 × 10E14 Jones for blue OPDs, a performance exceeding that of most crystalline inorganic detectors in this wavelength range.
I thank Jakob Wolansky, Tianyi Zhang, Conrad Winkler, Cedric Hoffmann, Natalie Banerji, Michel Panhans, Frank Ortmann, Johannes Benduhn and many others for the excellent collaboration.