Two-dimensional perovskites for lasing: the importance of compositional and structural engineering
Daniele Cortecchia a
a Department of Industrial Chemistry, University of Bologna
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
Illuminating the Future: Advancements in Photon sources, Photodetectors, and Photonic Applications with 3D and low- dimensional metal halide perovskites - #PhotoPero
Sevilla, Spain, 2025 March 3rd - 7th
Organizers: Emmanuelle Deleporte, Blas Garrido and Juan P. Martínez Pastor
Invited Speaker, Daniele Cortecchia, presentation 302
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.302
Publication date: 16th December 2024

Low-dimensional metal halide perovskites are attracting great interest for photovoltaics and photonics. In particular, 2D tin perovskites have been shown to have good optical gain properties which make them promising for applications as coherent light sources. [1] On the other hand, the ability of lead-based 2D perovskites to sustain lasing remain highly controversial. [2]  Here we show that both Sn and Pb-based 2D perovskites thin films can achieve amplified stimulated emission, and compare their properties as function of the optical pumping conditions as well as of the materials’ structural characteristics. By employing 1H, 13C, 15N, 119Sn and 207Pb solid state NMR spectroscopy, we were able to discern the local structural environments of the 2D perovskite of interest through their characteristic spectral fingerprints. Spin relaxation dynamics measurements reveal that the local supramolecular spatial arrangements, the molecular motions and structural rigidity are key factors shaping the energetic landscape of the material and its luminescence properties. Our work provides a deeper understanding of the structure-properties relationship of these soft semiconductors to assist the rational engineering of materials with improved optical properties for lasing applications.

European Unions Horizon Europe Research Council programme under Grant Agreement No. 101040681 (ERC Starting Grant SUPER).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info