Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.199
Publication date: 16th December 2024
To alleviate CO2 emissions and their impact on climate change, converting carbon dioxide into valuable products such as multi-carbon organic chemicals is of great importance. CO2 can be converted via different pathways such as electrochemical, photo-electrochemical and biological etc. Each approach offers distinct merits but also certain challenges in terms of process efficiency, product selectivity and implementation at scale etc. Therefore, developing coupled CO2 conversion systems, for instance bioelectrochemical reactors, can potentially address some of those challenges.[1] In this work, the focus is on developing cost-efficient, biocompatible, and high activity porous M-N-C catalysts with M = Ni and Co that are atomically dispersed as NiN4 and CoN4 active sites in porous carbon matrix. Ni- and Co-N-Cs are prepared by active-site imprinting approach using Mg as an imprinter.[2][3] Pyrolysis of Mg-N-C is carried out in a salt-melt at high temperatures (≥ 800 oC) and followed by an exchange with Ni or Co at low temperatures. N2-sorption of the materials reveal a micro-mesoporous structure with high surface areas (> 1000 m2 g-1) and a mass-transport enabling pore system. Extended X-ray absorption fine structure (EXAFS) reveal the existence of atomically dispersed single atom active sites with defined active site structure. A variety of Ni-N-Cs and Co-N-Cs were tested for CO2R activity in a rotating disc electrode (RDE) setup, showing high activity and selectivity towards CO2R versus the competing HER. Subsequently, these catalysts were implemented in a home-made bio-electrocatalytical system (BES) consisting of a bioreactor coupled to a CO2 electrolysis cell. Here, CO2 is first electrochemically converted to CO in the electrolysis cell which is then directly fed to bacteria (Clostridium ragsdalei) in bioreactor who further metabolize it to valuable carbon compounds such as acetate. In the BES, partial pressures of CO reached a maximum of 5.7 mbar and that of hydrogen was 2.7 mbar after 30 h. A specific exponential bacterial growth rate of 0.16 h-1 was observed with acetate formation rate of 1.8 mg L-1 h-1 and an acetate concentration of 0.103 g L-1 corresponding to acetate formation rate of 0.73 mmol d-1. As will be discussed in greater details in this talk, we have successfully demonstrated the validity of a coupled bio-electrocatalytical system concept operating with Co- and Ni-N-C catalysts for CO2 conversion.