Memristor synapses in time and frequency domain
Juan Bisquert a
a Instituto de Tecnología Química ITQ (UPV-CSIC), Av. dels Tarongers, 46022, València, Spain.
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2025 Conference (MATSUSSpring25)
Advancements in Memristor Technology: From Materials to Devices and Applications - #MemTech
Sevilla, Spain, 2025 March 3rd - 7th
Organizers: Valeria Bragaglia, Wooseok Choi and Juan Bautista Roldan
Invited Speaker, Juan Bisquert, presentation 096
DOI: https://doi.org/10.29363/nanoge.matsusspring.2025.096
Publication date: 16th December 2024

The potentiation and depression of synaptic conductivity regulate the plasticity and adaptability of synapses. In this discussion, we examine the general dynamic characteristics of ionic or electronic current conduction in memristors, which underpin the fundamental principles of synaptic activity. Key model requirements for memristors or chemical inductors to achieve conductance adaptation in response to incoming stimuli are outlined. We also propose various criteria, such as hysteresis and rectification, to achieve these properties. Additionally, we describe a range of diagnostic methods that link nonlinear time responses, the nonlinear cycling of current-voltage curves, and the linear frequency responses from impedance spectroscopy to evaluate adaptation properties. The frequency domain analysis of memristors and more generally, of conducting systems with memory features of some kind, provides essential information about the dynamic behaviour of the system. The impedance response of a memristor can be represented as a linear circuit made of resistances, capacitors, and inductors, with voltage-dependent elements. The equivalent circuit properties also establish the criteria for a Hopf bifurcation that produces spiking of artificial neurons.

This work was funded by the European Research Council (ERC) via Horizon Europe Advanced Grant, grant agreement nº 101097688 (“PeroSpiker”)

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info