CHARACTERIZATION OF ADSORPTION SITES ON IRO2 VIA TEMPERATURE PROGRAMMED O2 DESORPTION SIMULATIONS
VIVIANNE KARINA OCAMPO RESTREPO a
a Technical University of Denmark, Department of Physics, Fysikvej, 312, Kongens Lyngby, Denmark
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
#C&T - electrocat - Computational and theoretical electrocatalysis
Lausanne, Switzerland, 2024 November 12th - 15th
Organizers: Federico Calle-Vallejo and Max Garcia-Melchor
Poster, VIVIANNE KARINA OCAMPO RESTREPO, 380
Publication date: 28th August 2024

This study presents simulations of temperature-programmed desorption (TPD) profiles using desorption energy data from density functional theory (DFT) calculations. We apply this method to investigate the desorption of oxygen (O2) from IrO2(110) to gain insight into the kinetics of oxygen coupling and desorption, important elementary steps in the oxygen evolution reaction (OER). Initially, we confirm the thermodynamically stable adsorption site for oxygen in the pristine IrO2(110) as IrCUS, even with a high oxygen coverage. We successfully simulate TPD for O2 desorption, achieving good agreement with experimental TPD data for different initial oxygen exposures when including more than one adsorption site. We identify a new adsorption site, related to the formation of steps on IrO2(110)(IrCUS-step-0.5), that is essential for reproducing the experimental TPD. Our findings suggest that the observed TPD peaks are the result of different adsorption sites on the surface, rather than solely a lateral interactions effect. This work provides insight into the behavior of oxygen adsorption on IrO2, with implications for understanding surface reactivity and catalytic processes involving this material.

This project has received funding from Villum Fonden V-SUSTAIN (grant no. 9455).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info