Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.334
Publication date: 28th August 2024
The mitigation of climate change requires major transformations in the ways we generate energy and
operate technologies that release CO2. Photonic concepts and novel light-driven technologies provide many opportunities to mitigate CO2 emissions, transforming our current modes of energy use into more effective and sustainable ones. In a recent review paper, we describe several of these concepts that are in the early stage of scientific discovery, with at the same time great technological potential.1
In this presentation, we focus on how to create photovoltaics with improved properties that have potential for large-scale implementation. I will present an integrated near field/far-field multiple scattering formalism to control the absorption of light in multijunction solar cells. As a model system we use III-V/Si multi-junction solar cell and enhance the light trapping inside the silicon bottom cell by multiple scattering, creating a record photovoltaic energy conversion efficiency for silicon-based multijunction solar cells of 36.1%.2 A similar light trapping concept can be applied in other multijunction solar cell geometries, such as perovskite/silicon tandem solar cells.
We then present a study on the nanoscale incoupling of light in textured perovskite/silicon solar cells, and show how optical Mie resonances create strong light inhogeneities in the tandem solar cell that can affect its performance. In addition we create micron-scale light scattering structures in solar cells to enhance emission in the (far-)infrared to create passive radiative cooling, enhancing the efficiency of and long-term stability of the solar cell. Light-driven processes can also help fabricate novel photovoltaics materials, and we show our most recent work on laser-induced crystallization of methyl-ammonia lead iodide perovskite directly from solution, with the crystal formation monitored in-situ through photoluminescence and Raman spectroscopy.
I will also present the 900 M€ Dutch national research, innovation and industrial development program SolarNL, in which universities, research institutes, and companies work together to develop photovoltaics technology and industry to help create a fully sustainable energy generation system in our society by 2040.3
References
1) Photonic solutions to fight climate change, G. Tagliabue, H.A. Atwater, A. Polman, and E. Cortes, Nature Photon. (2024), in press. See here for a preprint of this article.
2) Wafer-bonded two-terminal III-V//Si triple-junction solar cell with power conversion efficiency of 36.1 % at AM1.5g, P. Schygulla, R. Müller, O. Höhn, M. Schachtner, D. Chojniak, A. Cordaro, S. Tabernig, B. Bläsi, A. Polman, G. Siefer, D. Lackner, and F. Dimroth, Progr. Photovolt. 32, 1-9 (2023); Nano-patterned back-reflector with engineered near-field/far-field light scattering for enhanced light trapping in silicon-based multi-junction solar cells, A. Cordaro, R. Müller, S. Tabernig, N. Tucher, P. Schygulla, O. Höhn, B. Bläsi, and A. Polman, ACS Photon. 10, 4061 (2023)
3) SolarNL: www.solarnl.eu