Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.321
Publication date: 28th August 2024
Further breakthroughs in halide perovskite solar cells require advances in new compositions and underpinning materials science. Indeed, a deeper understanding of these complex hybrid perovskite materials requires atomic-scale characterization of their transport, electronic and stability behaviour. This presentation will describe recent combined modelling and experimental studies on metal halide perovskites [1,2] in two fundamental areas related to improving operational stability in optoelectronic devices: (i) Iodide ion transport and the effects of using different sized A-cations and mixed Pb-Sn compositions as there is limited understanding of the impact of Sn substitution on the ion dynamics of Pb halide perovskites; (ii) Insights into passivating perovskites with molecular amino-silane compounds including surface interactions of additives; here we find that strong binding of amino-silanes at undercoordinated surface Pb ions adjacent to iodide vacancies and thereby promoting surface passivation.
[1] Y.H. Lin, M.S. Islam, H.J. Snaith et al., Science, 384, 767 (2024); R. Wang, B. Saunders et al., Energy Environ. Sci., 16, 2646 (2023).
[2] K. Dey, M.S. Islam, S.D. Stranks et al., Energy Environ. Sci., 17, 760 (2024); C. Kamaraki et al., Adv. Energy Mater., 14, 2302916 (2024).