Structural chirality and chiroptical properties in hybrid and soft chiral materials: A perspective from enhanced sampling simulations
Adriana Pietropaolo a
a University of Catanzaro, Viale Europa, Catanzaro, Italy
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
#ChiNano - Exploring Chiral Nanostructured Materials and Plasmonics for Energy applications
Lausanne, Switzerland, 2024 November 12th - 15th
Organizers: Sascha Feldmann, Magalí Lingenfelder and Giulia Tagliabue
Invited Speaker, Adriana Pietropaolo, presentation 317
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.317
Publication date: 28th August 2024

Hybrid organic–inorganic perovskites have emerged as exceptional materials for optoelectronic and energy conversion devices [1]. Recently, chiral hybrid perovskites, which incorporate chiral organic ligands into the inorganic framework, have attracted increasing attention as promising chiroptoelectronic systems with potential applications in optoelectronics, spintronics, and beyond [2]. The chirality and associated chiroptical responses in these materials are attributed to a chiral bias originating from the chiral organic ligands, which propagates through the inorganic framework, influencing the geometry of the entire hybrid perovskite structure [3]. Insights from soft materials design offer further opportunities to tailor and optimize these properties [4].

Modern multiscale modeling and simulation techniques have now reached unprecedented levels of accuracy, enabling the efficient design of chiral materials and the precise optimization of their chiroptical properties. In this discussion, I will present simulation workflows developed over the years to predict the circular dichroism (CD) and circularly polarized luminescence (CPL) of soft [5] and hybrid materials [6]. Enhanced sampling simulations, particularly through parallel bias metadynamics, in conjunction with ab-initio molecular dynamics (AIMD) based on density functional theory (DFT) methods and their time-dependent extensions, were employed to investigate the structure, dynamics, and chiroptical spectra, with a focus on CD and CPL.This simulation strategy enables the prediction of how non-covalent interactions in excited states can contribute to the generation of CPL spectra and the associated dissymmetry factors.

References

[1] Grancini, Nazeeruddin. Nat. Rev. Mater. 4: 2019, 4.

[2] Pietropaolo, Mattoni, Pica, Fortino, Schifino, Grancini. Chem 8: 2022, 1231.

[3] Long, Sabatini, Saidaminov, Lakhwani, Rasmita, Liu, Sargent, Gao. Nat. Rev. Mater. 5: 2020, 423.

[4] Albano, Pescitelli, Di Bari. Chem. Rev. 120: 2020, 10145.

[5] Wu, Pietropaolo, Fortino, Shimoda, Maeda, Nishimura, Bando, Naga, Nakano. Angew. Chem. Int. Ed. 61: 2022, e202210556.

[6] Fortino, Mattoni, Pietropaolo. J. Mater. Chem. C 11: 2023, 9135.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info