Switching mechanism of high-performance perovskite memristors
Mahdi Mohammadi a, Wolfgang Tress a
a Institute of Computational Physics, Zurich University of Applied Sciences (ZHAW), 8401 Winterthur (Switzerland)
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
#NeuroMorph - Engineering of Semiconductors for Neuromorphic Devices
Lausanne, Switzerland, 2024 November 12th - 15th
Organizers: Shahzada Ahmad and Samrana Kazim
Invited Speaker, Wolfgang Tress, presentation 305
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.305
Publication date: 28th August 2024

Memristors are two-terminal devices, where the resistance depends on previous current flow. This feature unites storage and computing capabilities in a single device, which might help address the von Neumann bottleneck of today’s computers. Furthermore, such in-memory computing and features like plasticity might enable simple realizations of neuromorphic computing.

Perovskites became interesting for memristors due to the hysteresis, they show in their current-voltage curve. Additionally, filamentary switching has been observed. Here, conductive nanofilaments are created, which can be reversibly ruptured and closed, turning the memristor on and off. These filaments are created either by defect ions in the perovskite or metal ions.

In this work, we report highest-performance and highly stable perovskite memristive switches (millions of cycles), whose switching behavior is further analyzed. This includes voltage-scan-rate and temperature dependent measurements to understand which parameters govern the values of SET and RESET voltage, as well as the switching dynamics. The effect of heat generation is measured by photoluminescence and thermography imaging and analyzed using a combined electrical and thermal model.

This research received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 851676 (ERC StGrt).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info