Multiscale in situ characterization of electrocatalysts at work
Ward van der Stam a
a Assistant professor, Inorganic Chemistry and Catalysis, Utrecht University, The Netherlands
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
#EEInt - Electrode-Electrolyte Interfaces in Electrocatalysis
Lausanne, Switzerland, 2024 November 12th - 15th
Organizers: Yu Katayama and Mariana Monteiro
Invited Speaker, Ward van der Stam, presentation 303
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.303
Publication date: 28th August 2024

The electrocatalytic reduction of CO2 (CO2RR) into valuable base chemicals and fuels is a very complex reaction that depends on the intimate relation between catalyst structure and external reaction conditions. Despite considerable progress over the past few years, it is evident that the precise identification of the active sites of the electrocatalyst under operation remains a challenge, which hinders the rational design and industrial application of advanced electrocatalysts for eCO2RR. For this purpose, in situ characterization techniques are required that probe the catalyst structure, from bulk to surface, with improved time and space resolution.

In this presentation, I will discuss how we deploy in situ time-resolved Raman spectroscopy (TR-SERS), in situ fluorescence and advanced in situ synchrotron-based X-ray scattering and spectroscopy techniques to investigate the electrocatalytic activation of CO2 and the dynamic chemical structure of the electrode surface at the electrode-electrolyte interface.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info