Publication date: 28th August 2024
Selenium is an elemental semiconductor with a wide bandgap appropriate for a range of optoelectronic and solar energy conversion technologies [1]. Developing high-performance selenium-based devices requires an in-depth understanding of both majority and minority carriers [2]. However, characterizing these carrier properties necessitates a wide range of experimental techniques with different sample configurations and illumination levels, complicating the analysis. This often results in discrepancies in the literature and values that fail to accurately reproduce experimental performance in device simulations. Thus, more reliable methods for extracting charge carrier information are highly sought after in the study of emerging optoelectronic materials.
We study the properties of both carriers in selenium simultaneously using a high-sensitivity, variable temperature photo-Hall system with a rotating parallel dipole line (PDL) magnet [3]. These results are compared with those from other advanced characterization tools, including transient THz spectroscopy, capacitance-based techniques, and voltage-dependent quantum efficiency measurements. To address discrepancies, we construct semiconductor physics models to account for non-idealities at interfaces and surfaces, and assess the validity of commonly used assumptions in standard analysis models, such as complete ionization of acceptors and donors at room temperature. This study is complemented by device simulations, resulting in a unique combination of material properties for high-performance selenium photoabsorbers that accurately reproduce experimental JV-curves and EQE-spectra.
The work presented here is supported by the Independent Research Fund Denmark (DFF) grant 0217-00333B, and by the Carlsberg Foundation grant CF24-0200.