Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.233
Publication date: 28th August 2024
Global warming has received a lot of attention from all over the world. The development of earth-abundant catalysts for highly selective electrochemical CO2 reduction reaction (CO2 RR) is a promising way to mitigate the increasing amount of CO2 in the atmosphere. Here, we have obtained non-noble metals consisting of Cu and Sn for the highly selective reduction of CO2 through a facile method. The morphology and particle size of the as-prepared CuSn catalyst were very different from the Cu catalyst, which was transformed into nanometers after Sn doping. Compared to the faradic efficiency of Cu2O, the total selectivity of the nanocatalyst towards CO2 RR was improved by 25% at a current density of −200 mA cm−2 in 1 M KOH electrolyte, and its selectivity was shifted towards formate. The high performance is attributed to the synergistic catalytic effect between Cu and Sn, which is still under investigation. This approach could also be used to design and develop high performance electrocatalysts for the selective conversion of CO2 to other products.