Computationally Driven Selectivity Descriptor for Electrosynthesis of H2O2
Samira Siahrostami a
a Associate Professor, Department of Chemistry, Simon Fraser University
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
#C&T - electrocat - Computational and theoretical electrocatalysis
Lausanne, Switzerland, 2024 November 12th - 15th
Organizers: Federico Calle-Vallejo and Max Garcia-Melchor
Invited Speaker, Samira Siahrostami, presentation 226
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.226
Publication date: 28th August 2024

Understanding selectivity trends is a crucial hurdle in the developing innovative catalysts for generating hydrogen peroxide through the two-electron oxygen reduction reaction (2e-ORR). The adsorption free energy of O* and OOH* intermediate and the degree of O2's adsorption to the surface and have been suggested as selectivity descriptors for 2e-ORR.[1] These approaches have been the main guide for understanding and predicting selectivity for 2e-ORR catalysts over the past decade. Yet, none of them has yielded an appropriate selectivity descriptor capable of quantifying selectivity, thereby serving as a metric for describing trends in selectivity. To resolve this issue, we identify a thermodynamically derived selectivity parameter (ΔΔG) based on computational hydrogen electrode (CHE) model [2] which allows to quantify selectivity using predicted adsorption free energies of ORR intermediates (OOH* and O*) and free energy of H2O2 (Figure 1). [3] We validate the efficacy of this parameter, across a wide spectrum of reported binary alloys [4] and demonstrate that only a small number of binary alloys with a single active site that have been reported to have high activity are selective for 2e-ORR. [5] These findings highlight the potential of ΔΔG as a selectivity parameter for identifying high-performance 2e-ORR catalysts. It also demonstrates the significance of concurrently considering both selectivity and activity trends. This holistic approach is crucial for obtaining a comprehensive understanding in the identification of high-performance catalyst materials for optimal efficiency in various applications.

 

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info