Theoretical studies of the mechanism of C1 and C2 product formation in CO2 electrochemical reduction
Elvar Örn Jónsson a, Hannes Jónsson a
a Faculty of Physical Sciences and Science Institute, University of Iceland, Reykjavik Iceland.
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
#PECCO2 - Advances in (Photo)Electrochemical CO2 Conversion to Chemicals and Fuels
Lausanne, Switzerland, 2024 November 12th - 15th
Organizers: Deepak PANT, Adriano Sacco and juqin zeng
Invited Speaker, Elvar Örn Jónsson, presentation 212
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.212
Publication date: 28th August 2024

Theoretical atomic scale calculations of the electrochemical reduction of CO2 and the competing hydrogen evolution reaction are presented. The calculations include evaluation of the activation energy of the various elementary steps as a function of applied voltage based on efficient methods for finding saddle points on the energy surface that represent transition states for the reactions. The energy and atomic forces are calculated using density functional theory (DFT). Copper is found to be special among the transition metals in that the activation energy for CO2 reduction becomes lower than that of hydrogen evolution reaction (HER) within a certain window of applied voltage [1]. The fact that the onset potential of formate and CO formation is similar can be explained by the fact that the energy barrier for these two competing processes turns out to be similar [2]. The most likely step for reduction of CO, which also turns out to be the rate limiting step for methane formation, involves a Heyrovsky mechanism to form COH, rather than formation of CHO. The rate of C-C bond formation is strongly dependent on the surface structure, Cu(100) being the most active facet, and it can be affected by H-adatom coverage. The optimal mechanism for C-C bond formation is found to involve a nearly simultaneous electron-proton transfer to form *OCCOH. Calculations of CO adsorption on doped copper surfaces reveal multiple CO molecules adsorbed on a single surface impurity [3]. The calculations have mostly been carried out by explicitly including a few (4 or 5) water molecules around the reacting surface species while the rest of the electrolyte is described with an implicit solvent approach. Proper inclusion of a liquid electrolyte at the surface of the electrode is a challenge as it makes the DFT calculations too heavy. Ongoing methodology development based on a hybrid simulation approach where the liquid electrolyte is fully represented will be introduced [4].

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info