Publication date: 28th August 2024
Electrochemical water splitting represents one of the most advanced technologies to provide clean and renewable energy. [1] In this process, oxygen evolution reaction (OER) requires four electrons,[2] which is known as a complex and pivotal step that controls the water splitting efficiency. Up to now, the most popular and efficient catalyst for OER is an Iridium-based electrode. [3] However, the cost of Ir makes the process expensive, and finding cheaper material based on earth-abundant metal is mandatory. In this context, we present the development of a high-entropy layered double hydroxide electrocatalyst for the oxygen evolution reaction. MgAl-based LDH is a kind of material with a higher number of hydroxyl groups, which are expected to boost OER. [4] Here, we proceed to substitute the Mg cation with four other cations at different molar fractions using a metastable entropy-stabilized solution. The characterization of high entropy LDHs using XRD, XPS, TEM, and UV-visible spectroscopy indicates the effective substitution of Mg by different cations. We found that HE-LDHs material performs better than commercial IrO2, and the Mg substitution leads to an optimal composition, which can lower the d-band center position as an effective method to improve the OER performance.