Catalysis on high entropy materials
Jan Rossmeisl a
a Department of Chemistry University of Copenhagen
Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
#C&T - electrocat - Computational and theoretical electrocatalysis
Lausanne, Switzerland, 2024 November 12th - 15th
Organizers: Federico Calle-Vallejo and Max Garcia-Melchor
Invited Speaker, Jan Rossmeisl, presentation 173
Publication date: 28th August 2024

The green transition requires discovery and development of new catalyst materials for sustainable production of chemicals and fuels. However, it is difficult to predict a material, which might have a high catalytic activity for a given reaction, therefore the development of catalysts up until now has been driven mainly by trial and error. It would increase the pace of development, if we could predict a range of promising materials or if we at least could understand the limitations of catalysis. In this context high entropy alloys offer a chemical space of possible materials where the composition can be smoothly varied and where the properties also might vary in a seamless manner. This is good news for catalysis as such a smooth space is easier to explore to determine the interesting regions in composition space. Furthermore, the highly heterogeneous nature of a high entropy alloy surface reveals fundamental effects which are important for chemistry on surfaces in general, but are overlooked in the classic mean field view on catalysis. 

 

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info