Publication date: 28th August 2024
Colloidal perovskite nanocrystals exhibit many intriguing properties, one of which is collective behavior. Assemblies of close-packed nanocrystals in the form of continuous films and individual mesocrystals (superlattices) attract attention because of reported enhancements in exciton diffusion, energy transport, light amplification, and quantum phenomena. To deepen our understanding of these materials, it is important to study changes in the photophysics of perovskite nanocrystals as they transition from a liquid dispersion to a disordered glassy film and an ordered superlattice.
In this contribution, I will discuss our efforts to study the optical properties of single-component all-inorganic and hybrid organic-inorganic perovskite nanocrystal superlattices. First, we will consider the possibility of collective response in CsPbBr3 nanocrystals from a theoretical perspective of single-excitation superradiance, discussing factors that may weaken or strengthen it. Second, we will examine experimentally achievable CsPbBr3 nanocrystal superlattices, focusing on changes in their steady-state and time-resolved spectroscopic observables in response to nanocrystal synthesis origin and environmental conditions such as sample aging. Lastly, we will highlight other compositions of single-component perovskite nanocrystal superlattices and the prospects of achieving a tunable collective response.
This research is funded by the European Union (ERC Starting Grant PROMETHEUS, project No. 101039683) and the Faculty of Science, Lund University. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.