Publication date: 28th August 2024
Electrocatalytic water splitting is generally regarded as the most environmental-friendly and sustainable pathway for green hydrogen production. However, the energy efficiency of water electrolysis is hampered mostly by the anodic process, where the sluggish oxygen evolution reaction (OER) requires excessively high overpotentials to proceed at relevant current densities. This high overpotentials needed are partly due to complexity of this 4e– process requiring the generation of a O2 molecule with ground triplet state. Because of this, spin polarization upon the catalytic entities has been proposed to improve the efficiency of the process, in order to favor parallel spin alignment in the product.
One successful strategy towards this aim has been realized through the chiral-induced spin selectivity (CISS) effect [1]. Following this strategy, improved OER kinetics are promoted when a catalytic surface is decorated with chiral organic molecules, which has been assigned to the spin-filtering power of the enantiopure molecules as mediators in the charge transfer processes [2]. Another plausible strategy to achieve improved OER kinetics points towards the use of external magnetic fields, which are able to favor spin alignment of open shell radicals to form an open shell O–O bond [3].
In this talk we will present our latest results following these two different approaches to accelerate the OER anodic reaction during water splitting. We will introduce our strategies for the design of the catalysts, as enantiopure or magnetically active sites; their structural, magnetic and electrochemical characterization; up to their implementation into full cell electrolyzers as proof-of-concept for future exploitation of these promising phenomena for enhanced OER electrocatalysis.