Publication date: 28th August 2024
Optoelectronics applications require control over the generation, separation, and extraction of photoexcited charges and control over heat. Yet, in many material systems, energy carrier transport must navigate defects of various natures over a broad range of length and time scales. There are many approaches to inferring microscopic energy transport through energetic, temporal, or spatial markers, but each faces limitations. Moreover, heterogeneous systems are often elusive to simple kinetic models that reveal fundamental transport parameters. To understand the principles that govern electronic and thermal relaxation dynamics in complex systems relevant to optoelectronic applications, advanced experimental techniques and theoretical models rooted in fundamental physical phenomena are needed. This presentation will focus on the following questions: How do heterogeneous environments and interfaces impact microscopic energy transport? How can we access information about energy carriers that traditionally do not have clear spectroscopic signals? How can we control the directionality of energy carrier flow? I will describe pump–probe optical measurements and modeling of both charge-carrier and thermal transport in nanocrystal assemblies.