Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.126
Publication date: 28th August 2024
Bifaciality is a salient sub-field for perovskite solar cells (PSCs), both due to reaching higher efficiency values for single-junction devices and applying them to tandem devices with other technologies or PSCs [1]. For this purpose, transparent electrodes (TEs) have been investigated, including TCOs, metal nanowires, ultrathin films, and 2D materials such as graphene [2]. TEs with noteworthy bendability properties are also riveting to be used in lightweight-flexible devices for novel areas like portable devices or aerospace applications [3]. In this context, we present bifacial perovskite solar cells, suggesting alternative transparent electrodes composed of three ultrathin layers, called OMOs (oxide-metal-oxide). The main material of the study is nickel oxide/silver/nickel oxide (NAN) [4] layers where a silver layer is sandwiched between NiO films, with thicknesses of 35 and 8, for NiO and Ag layers respectively. The triple layers are fabricated with sequential e-beam deposition, consisting of only one evacuation process. A comprehensive characterization of NAN layers providing the transmittance and conductivity properties and their performance when applied to perovskite solar cells, with remarkable Voc of 1.11 V using an active layer bandgap of 1.6 eV, will be presented in which the charge transport and absorber layers of the devices are fabricated via solution-based methods on rigid and flexible substrates.
This work was funded by FCT (Fundaçao para a Ciencia e Tecnologia, I.P.) under the projects Paperovskite (2022.02954.PTDC), Flexsolar (PTDC/CTM-REF/1008/2020) and Spaceflex (2022.01610.PTDC ).