Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.108
Publication date: 28th August 2024
Electrolysis is usually performed under constant potential or current, but pulsed electrolysis has received growing attention over the last years, especially in the context of CO2 reduction where favourable impacts on product selectivity are observed. However, the mechanism at play remains under debate.1,2 Among the most often reported contributions are the modified mass-transport of reactants at the electrode, the oxidation of metal catalyst during anodic steps or the morphological reconstruction of the surface under dynamic conditions. Much less explored are the (micro-)kinetics events during transient operation. Herein, we address some specific cases following classical theory of electron transfer and chemical reaction rate. Upon conditions where mass-transport effect, metal oxidation and surface reconstruction are not interfering, we predict large selectivity improvements (exceeding 5000% for some cases), resulting only from (micro-)kinetics effects. For the specific reaction framework investigated, we provide rational explanations for the selectivity switch, derive a method for pulsed program optimization and show that the high selectivity improvements are compatible with high current density operation, relevant for commercially-viable CO2 reduction.