Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.093
Publication date: 28th August 2024
The difficulty in characterizing the complex structures of nanoporous carbon electrodes has led to a lack of clear design principles with which to improve supercapacitor energy storage devices. While pore size has long been considered the main lever to improve capacitance, our study of a large series of commercial nanoporous carbons finds a lack of correlation between pore size and capacitance.[1] Instead nuclear magnetic resonance spectroscopy measurements and simulations reveal a strong correlation between structural disorder in the electrodes and capacitance.[1] More disordered carbons with smaller graphene-like domains show higher capacitances due to the more efficient storage of ions in their nanopores. Furthermore, our recent Raman spectroscopy experiments provide additional support for disorder-driven capacitance.[2] Specifically carbons with smaller ID/IG ratios have smaller-graphene like domains and larger capacitance values. Our findings will stimulate a new wave of research to understand and exploit disorder to achieve highly energy dense supercapacitors.