Publication date: 28th August 2024
Johnson Matthey’s (JM) vision is for a world that is cleaner and healthier, today, and for future generations. As global leader in sustainable technologies, we apply science to catalyse the net zero transition for our customers. Through science we enhance life for millions of people, all over the world. We are making it our business to help address the four essential transitions: driving down transport emissions, transforming our energy emissions, decarbonising chemicals production, and creating a truly circular economy. If the transport transition is all about moving people and goods while lowering emissions, the energy transition is about finding sustainable ways to power the world. Hydrogen has a huge role to play because when it is used as fuel, the only by-product is water. Low-carbon hydrogen is essential for a viable hydrogen economy.
Because chemical and materials design for real world applications are a multiscale problem, in JM we have experts in different length scales (from Å to m) and we use state-of-the-art methods, such as high-throughput calculations and machine learning (ML) techniques. We perform 1) Nanoscale: Electronic and atomic modelling, 2) Micro/Mesoscale: Kinetic data and modelling, pore-scale modelling, and 3) Macroscale: Reactor scale modelling (e.g., CFD, process modelling). Theoretical work together with experimental measurements guide the development of real-world catalysts, driving innovation and progress in sustainable technologies. Several use cases will be demonstrated coming from our four business areas: Clean Air (CA), Platinum Group Metal Services (PGMS), Catalyst Technologies (CT) and Hydrogen Technologies (HT) where theoretical and computational tools are used to understand complex materials and guide experiment.
A fundamental study employing Density Functional Theory has been performed to study the deactivation of the industrially relevant Cu/ZnO/Al2O3 catalysts for methanol synthesis. It has been shown that the catalyst is impacted strongly by the behaviour of the zinc oxide (ZnO) component, particularly with regards to sintering. Although the copper component also sinters, the overall deactivation observed is largely driven by changes in the ZnO moieties.[1]
The addition of small amounts of a silicon-based promoter[2] has previously been identified as a promising low-cost, readily available, and non-toxic additive that slows down the rate of deactivation.[3] The presence of silicon improves the aging characteristics and slows down the sintering of ZnO. Improving and slowing down the sintering of the standard methanol catalyst is of great industrial relevance. This is particularly important with regards to sustainable methanol production from CO2, due to the significantly higher quantities of by-product water produced compared to conventional methanol synthesis conditions. Therefore, gaining fundamental understanding by looking at the stability promoter role of Si is important.
In this study, two main questions were addressed: 1) What is the effect of Si in both bulk and surface? and 2) How does water interact with bare ZnO and SixZny-2xOy (x=1,2,3)? Finally, the results will be compared to experimental data.