Exploring Nanoscale Alkali-Copper Chalcogenides: Colloidal Synthesis and Thermoelectric Potential
Niraj Nitish Patil a, Ruiqi Wu b, Nilotpal Kapuria a c, Andreu Cabot d, Kevin M Ryan a, Alex Ganose b, Shalini Singh a
a Department of Chemical Sciences and Bernal Institute, University of Limerick, Ireland, Ireland
b Department of Chemistry, Imperial College London, UK
c Department of Chemistry, Indiana University Bloomington, USA
d Catalonia Institute for Energy Research−IREC, Jardins de les Dones de Negre 1, 2ª pl., Sant Adrià de Besòs, Spain
Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
#NANOFUN - Functional Nanomaterials: from materials to applications.
Lausanne, Switzerland, 2024 November 12th - 15th
Organizers: Emmanuel Lhuillier and Shalini Singh
Oral, Niraj Nitish Patil, presentation 073
Publication date: 28th August 2024

In the last decade, lead halide perovskites have revolutionized material science with their remarkable charge mobility, light absorption, and adjustable band gaps, all achieved through low-temperature processing.[1] However, their instability and toxicity limit their broader application. Despite these challenges, perovskites hold great potential for future energy technologies, spurring the development of "perovskite-inspired" materials (PIMs). In this aspect, the scientific interest has recently shifted to alkali metal-based chalcogenides, which represent a new category of semiconducting inorganic compounds and are being explored as potential candidates in the quest for novel energy materials. Recently, the focus has shifted to alkali metal-based chalcogenides as promising semiconductors for energy materials. Ternary alkali-metal dichalcogenides {AMeE (A = Li, Na, K, Rb, Cs; Me= Metals E = S, Se, Te} are identified as potential candidates for energy conversion and storage.[2] While high-temperature solid-state synthesis often results in limited phase control, wet chemical synthesis offers a promising alternative by producing uniform nanoscale particles and providing insights into their formation.[3,4]

Building on several theoretical and experimental studies on cesium copper-based chalcogenides, we present the synthesis of cesium copper selenide on a nanoscale regime with precise control over dimension, morphology, and phase.[5,6] The influence of key reaction variables, such as precursor’s reactivity, ligands, reaction temperature, and reaction time, on the size and shape of the nanocrystals was demonstrated, showcasing the flexibility of the wet chemical synthesis. An ex-situ mechanistic investigation reveals that NC formation is driven by the dissolution of binary Cu2-xSe, followed by incorporating Cs+ to form the ternary CsCu5Se3. The current study also reveals that variation in the alkyl chain length of amines influences the size, shape, and formation of distinct phases. The structural, electronic, and thermoelectric characteristics were experimentally evaluated and further corroborated by computational analysis. The experimental results revealed the material's ultralow thermal conductivity of 0.6 W.M-1.K-1 and a good thermoelectric figure of 0.3 at 720 K, providing concrete evidence of its potential. The detailed mechanistic insights presented in this study will significantly advance the development of cutting-edge functional materials in the field of alkali metal chalcogenides for various applications.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info