Publication date: 28th August 2024
Colloidal heterostructures are nanoparticles composed of two materials connected at an interface, that can exhibit unique properties different from those of their individual components. When two materials with suitable band alignment are chosen, the resulting heterostructures can convert sunlight into electron – hole pairs, which are then separated by the electronic structure of the junction. This can efficiently inhibit recombination, making the photogenerated carriers available for exploitation in photocatalytic reactions.
Our recently reported CsPbX3/Pb4S3X2 heterostructures [1] (where X= Cl, Br, I) are a promising example of such architectures, where two semiconductors with different crystal structures are connected by an epitaxial interface. Notably, the composition of the two domains can be independently tuned by exploiting a combination of direct-synthesis protocols and post-synthetic halide exchanges, leveraging on the different halide mobility in the two domains.
In this work, we first employed a combination of absorption and ultraviolet photoelectron spectroscopy to explore the band alignment of CsPbX3/Pb4S3X2 heterostructures, which we can now synthesize on the 100 mg scale. Based on these results, we identified a potential application in the photocatalysis of biomass conversion, like the oxidation of 5-hydroxymethylfurfural [2],[3]. Unlike more popular processes like CO2 reduction these reactions can take place in organic solvents, which are more compatible with metal halides, and still hold significant relevance thanks to the production of chemicals with added economical value.
So far, our preliminary tests demonstrate excellent in-operando stability, and show that heterostructures are significantly more active as photocatalysts than their individual constituting materials, which we attribute to the efficient carriers separation at the junction. These promising results pave the way to further photocatalysis studies, currently ongoing, and are a significant first step towards the real-world application of these complex yet fascinating heterostructures.
The work of S.T. was funded by the Project IEMAP (Italian Energy Materials Acceleration Platform) within the Italian Research Program ENEA-MASE (Ministero dell'Ambiente e della Sicurezza Energetica) 2021-2024 "Mission Innovation" (agreement 21A033302 GU n. 133/5-6-2021).
We thank the financial support by Generalitat Valenciana (CIPROM/2022/57).