Proceedings of MATSUS Fall 2024 Conference (MATSUSFall24)
DOI: https://doi.org/10.29363/nanoge.matsusfall.2024.025
Publication date: 28th August 2024
The structural and thermodynamic stability of pure FAPbI3 perovskite films has been a topic of extensive research and discussion in the field of perovskite solar cells. While previous studies have primarily focused on the transition of X-ray diffraction (XRD) patterns from an α-FAPbI3 cubic phase to the more stable delta phases, our research takes a novel approach. We present a comprehensive structural and symmetry analysis that uncovers the tetragonal nature of the perovskite FAPI phases processed with Flash IR annealing (FIRA), offering a fresh perspective on this intriguing subject.
In phase transformation and crystallization, the film's crystal structure might be affected by the strain field, especially if the film undergoes structural distortions or tilting of lattice planes. Therefore, by controlling the FIRA process parameters (such as temperature and heat rate), it is possible to finely tune the properties of the film, including strain-related properties, as shown. [1] These processes lead to highly stable perovskite devices, where we further show that molecular additives contribute more to the crystallization dynamics as a mass transport diffusion process than to the atomic defect level. We also present a new methodology based on large dataset computational image processing correlated with advanced characterization techniques.