Publication date: 28th August 2024
Turning carbon dioxide (CO2) into an industrial feedstock is a major challenge, but a necessity for a circular economy. To this end, utilizing an alkaline membrane electrode assembly (MEA) to electrochemically perform the CO2 reduction reaction (CO2RR), transforms CO2 in chemical feedstocks at efficient and industrially relevant reaction conditions. However, the cation crossover through the anion exchange membrane combined with the high local CO2 concentration and alkalinity yield carbonate salts deposit at the cathode. These salts block CO2 flow to the catalyst, decreasing the faradaic efficiency and creating a catastrophic pressure buildup. While carbonate formation is an inherent problem in alkaline CO2RR, cation crossover and salt precipitation can be mitigated.
Here, we study the effect of operational conditions on the cell failure in alkaline MEA electrolyzers. We derived four key operating conditions to vary, based on solubility products and the Nernst-Plack equation. Focusing on the cation crossover deconvolutes salt-related cell failure from the electrolyzer design, while simultaneously predicting salt-related cell failure, without the need to run a cell to the point of failure. We found a high degree of cation crossover mitigation when using either cesium-based anolytes or elevated cell temperatures. Furthermore, we found an interesting effect of the membrane thickness on the ionic fluxes over the membrane. Our results are both insightful to researchers starting in the field of MEA CO2 electrolyzers and as guidelines for prolonged cell operation.