Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.555
Publication date: 18th December 2023
Novel growth and fabrication technologies allow for an unprecedented level of control over
nanoscale semiconductor quantum devices. Recently, several groups have demonstrated
samples where multiple quantum dots can be tuned into resonance [1,2]. When multiple
quantum emitters become indistinguishable, collective quantum effects like superradiance
and measurement-induced cooperative emission [2] emerge due to entanglement between
the emitters.
A detailed understanding of the signatures of cooperative emission is challenging for
several reasons: First, close-to-identical emitters operate in a regime where non-degerate
perturbation theory breaks down. Second, real-world quantum devices typically strongly
interact with local phonon baths as well as with a global photonic environment, and
the different environments generally influence each other. Moreover, the presence of ad-
ditional imperfections like spectral wandering further obfuscates the physical picture.
Nevertheless, for few emitters, the problem of cooperative emission in the presence of
multiple environments can be solved numerically exactly using the process tensor (PT)
formalism [3,4].
Here, I report on recent theoretical and experimental findings and summarize the
current understanding of cooperative emission in semiconductor nanostructures. This in-
cludes the discussion of how genuine superradiance can be distinguished from measurement-
induced cooperative emission, how to interpret peaks in g(2) photon correlation experi-
ments, and why inter-emitter correlations remain strong for long times despite strong
interactions with phonons.