Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.435
Publication date: 18th December 2023
: A wide range of physical properties associated with layered (two-dimensional) perovskites has been realized due to the vast composition space of the inorganic layer and molecular diversity in organoammonium cations. A new class of layered halide perovskites recently discovered by our group, termed “mosaic” perovskites, form through alloying of single and double layered perovskites and feature three distinct metal ions. The first example of these disordered alloys comprised Cu(I), Cu(II), and In(III) in the perovskite layer, leading to emergent optoelectronic properties owing to intervalence charge transfer between Cu ions.
Here, we discuss facile synthetic methods to produce mosaic layered perovskites, the role of metal-cation ordering in optoelectronic and magnetic properties, and the interplay between stability and disorder in these complex mixtures. Moreover, we expand the diversity of mosaic layered perovskite alloys through exploration of transition-metal ion pairs that engender strong intra-layer coupling. We demonstrate that features of the known Cu(I)-Cu(II)-In(III) mosaic alloy can be used to systematically evaluate candidates and experimentally realize new examples of mosaic alloys.
Overall, these mosaic halide-perovskite alloys represent a platform for rational design of intra-layer coupling interactions within layered halides beyond the conventional compositional limitations of single or double perovskites.