Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.413
Publication date: 18th December 2023
High theoretical energy density and low cost make lithium-sulfur (Li-S) batteries a very promising system for next-generation energy storage. Li-S batteries (LSB) performance largely depends on the reversibility of elemental sulfur to Li2S conversion and the mitigation of the polysulfide shuttle effect. Well-designed sulfur host materials including Fe or Co single atoms embedded on N-doped carbon are proposed to tackle the LSB challenges and enhance its electrochemical performance [1]. The physiochemical characterization of these materials was performed with different accurate techniques such as XRD, XPS, BET, Raman and Mössbauer spectroscopies, HAADF-TEM and TEM. The atomic dispersion of Co and Fe was proved up to relatively large amount. The catalytic effect on the sulfur conversion reactions, using the different structures developed, could be highlighted, by measuring kinetic constants. When comparing these materials with sulfur loadings between 3 and 4 mg cm2 and electrolyte/sulfur (E/S) ratio higher than 8 ml.g-1, the performance in terms of capacity and cyclability are relatively similar. The differentiation of developed materials was only be observed, when the experimental conditions are less favorable, especially in lean electrolyte, ratio E/S equal or lower than 6 mL.g-1. In these conditions, the materials presenting a porous structure including mesopores with a specific surface at least equal to 300 m2 g-1 enable to obtain high performance, with capacity equivalent to those obtained with high E/S ratios. Moreover, the coulombic efficiency is improved by the limitation of the redox shuttle effect.