Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.407
Publication date: 18th December 2023
Perovskite photovoltaics stand out as a top contender in the quest for new solar energy harvesting technologies. However, the presence of toxic lead in perovskite devices necessitates exploration of alternatives. The most popular of which has been tin-perovskites, known for their extremely fast and difficult to control crystallization. In this talk, a novel method of printing of tin-perovskite films will be presented, involving a crystallization trigger and subsequent control of nucleation and growth through solvent engineering. It was developed using an in-line optical spectroscopy characterization equipment providing analysis of the crystallization process in-situ. Photoluminescence, Raman and reflectance probes were installed and probed the corresponding signals to give information of film changes after printing and during post-printing treatment. The new method for printing tin-perovskite films enabled the fabrication of the first slot-die coated solar cell device, opening avenues for the development of fully printed, lead-free perovskite photovoltaics at an industrial scale.