Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.383
Publication date: 18th December 2023
Hybrid perovskites are one of the most promising materials for next-generation optoelectronic properties, including solar cells. However, the solution-based fabrication process brings to the formation of polycrystalline films, resulting in defects, which have a detrimental effect on the perovskite solar cell performance because they are expected to trap charge carriers, facilitating nonradiative electron-hole recombination. Hence, the investigation of the impact of defects on fundamental photo-physical properties becomes crucial for the optimization of the device.
In this framework, I have investigated the optoelectronic properties of three differently defective materials. More in details, I employed different amount of antisolvent and the passivation procedure to finely tune the defects concentration. In order to accurately evaluate defects concentration, I performed transient absorption measurement, and I analyzed the results considering the Burnstein-Moss effect. With the aim of investigating the correlation between defects and fluence regime, I used time resolved techniques, i.e. time resolved photoluminescence and transient absorption spectroscopy. In particular, time resolved photoluminescence highlighted that, by increasing the trap states concentration in the material, a shift in the onset for radiative regime arises at progressively higher fluences. On the other hand, transient absorption spectroscopy evidenced the strong correlation between the organic cation used for the passivation and the occurrence of the Auger regime. Therefore, for the material with lower trap states concentration, the range in which radiative recombination dominates is enlarged. Ultimately, this is reflected in the solar cell efficiency which is enhanced by 22% with respect to the higher defective material.