Nanoscale Mapping of Carrier Collection in MXene-induced Perovskite Solar Cells
Shrabani Panigrahi a
a CENIMAT|i3N, NOVA University Lisbon, Caparica, Portugal.
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
#NextGenSolar - Innovations beyond ABX3 perovskites: Materials development, Photophysics, and Devices
Barcelona, Spain, 2024 March 4th - 8th
Organizers: Silvia Motti and Marcello Righetto
Oral, Shrabani Panigrahi, presentation 352
DOI: https://doi.org/10.29363/nanoge.matsus.2024.352
Publication date: 18th December 2023

Two-dimensional transition metal carbides (MXenes) are of great interest for a range
of applications in electronics, including solar cells due to their tunable optoelectronic
characteristics, strong metallic conductivity, and attractive solution processability. In this study,
we used photo-conductive atomic force microscopy (pcAFM) to map the local (nanoscale)
photovoltaic performances of the Ti 3 C 2 T x MXene integrated TiO 2 electron transport layer (ETL)
based perovskite solar cells (PSCs) to determine the treatment's impact on the microscopic
charge flow inside the devices. The nanoscale photovoltaic performances of the devices with
MXene integrated ETLs is first studied by using the pcAFM technique. The underlying PV
mechanisms and their localized dependency on the interfacial modification across the layers
must be understood through the investigation of these photoresponses at the nanoscale. The
morphology and photocurrent maps with different applied voltages have been simultaneously
measured with nanoscale resolution from the top surfaces of the devices without back contacts.
Compared to the as-deposited samples, Ti 3 C 2 T x MXene based PSCs show a more uniform and
improved current flow throughout the film. Average local photocurrent for MXene-induced
PSCs is significantly larger than that of as-deposited PSCs at zero applied bias and steadily drops
as positive bias is raised until it reaches the open circuit voltage. Large variations in short-circuit
current were also observed at different locations across the film that appeared identical in
topography images. Our study reveals that MXene-integrated ETLs have the potential to improve
the polycrystalline photovoltaic devices' performance by enhancing the active layers' intrinsic
properties and nanoscale photoconduction.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info