Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.316
Publication date: 18th December 2023
Electrocatalysis is at the heart of emerging renewable energy technologies such as fuel cells, electrolyzes, and rechargeable metal-air batteries, all of which are expected to play a significant role in transitioning to a more sustainable future. Two-dimensional materials have emerged as promising electrocatalysts with a wide range of application in electrocatalysis involving oxygen, carbon and nitrogen reactions. In this talk, I will present our recent progress on atomic scale design of two-dimensional materials for various electrocatalysis reactions. More specifically, I focus on computational catalyst design for 1) 2e- oxygen reduction reaction (ORR) for hydrogen peroxide (H2O2) synthesis1-4, and 2) CO2 reduction reaction (CO2RR)5-7. In the first part, I show various strategies that we have applied to tune the activity and selectivity of carbon-based materials for 2e-ORR to enhance the production of H2O2. The main drawback of carbon-based materials is related to their limited performance under acidic conditions which is desired for storage and transportation of H2O2. Extensive experimental work demonstrates that the majority of carbon-based materials are highly active in alkaline conditions and moderately active in neutral conditions. I discuss the computational efforts in understanding the pH effect on the activity of carbon-based structures as well as the insight we can gain from them. In the second part, I describe how we can tune carbon-based materials and two-dimensional metal organic frameworks for CO2RR as well as the insights we acquired from computational analysis.