Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.305
Publication date: 18th December 2023
The design and implementation of complete, operational photo-electrochemical devices requires a careful consideration of material requirements and their interplay in an integrated device. Multi-physical, multi-dimensional and multi-scale modeling tools are essential for the investigation of feasibility, optimization and implementation of such devices. Modeling activities however always have to be fed and, ultimately, validated by experimental data of material and device characteristics. In this talk, I will discuss the development of predictive modeling tools for photo-electrochemical water and CO2 reduction. These models account for the atomistic-scale via density functional theory, molecular-scale by micro-kinetic and molecular dynamics models, nm-scale by double layer transport models, meso-scale by tomography-based direct numerical simulations, and device scale by volume-averaged device models. I will review each of these modeling steps and highlight the importance of interfacing them. I will then show what experimental data is needed to run these simulations and how these models can be validated. I will end with some device-level demonstrations of photo-electrochemical devices that follow the design guidelines developed by the multi-scale models.