Polaron Formation Dynamics in BiOI Nanoplatelets Studied by Time-Resolved Photoemission Electron Microscopy
Matthias Franz Kestler a b, Kyung Chul Woo b, Justin W. X. Lim b, Lucas M. Prins a, Jochen Feldmann a, Zhi-Heng Loh b
a Chair for Photonics and Optoelectronics, Nano-Institute Munich and Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstr. 10, 80539 Munich, Germany
b School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
#NextGenSolar - Innovations beyond ABX3 perovskites: Materials development, Photophysics, and Devices
Barcelona, Spain, 2024 March 4th - 8th
Organizers: Silvia Motti and Marcello Righetto
Oral, Matthias Franz Kestler, presentation 273
DOI: https://doi.org/10.29363/nanoge.matsus.2024.273
Publication date: 18th December 2023

BiOI is a nontoxic, stable and polar semiconductor, which shows high conversion efficiencies in photocatalytic water splitting. This is due to an ultrafast and effective charge separation also launching coherent phonons after short laser pulse excitation [1]. The coupling of electronic excitations and phonons should also manifest itself in polaronic effects. To gain unambiguous experimental evidence for polaronic effects we have carried out time-resolved photoemission electron microscopy (TR-PEEM) experiments. This technique offers the unique possibility to learn about the dispersion E(k) of the conduction band (CB) and its occupation with electrons as a function of time after pulsed optical excitation. In order to interpret our data it is not sufficient to describe merely the temporal evolution of the electron distributions in a static CB. We observe that the dispersion of the CB changes itself in time. This is in particular monitored around the Gamma point of the CB. This combined temporal change in band-structure and electron distribution can be explained by the formation of a polaronic excitation.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info