Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.253
Publication date: 18th December 2023
Nowadays, aqueous rechargeable batteries (ARBs) are emerging as highly promising energy storage alternatives to current Li-ion batteries for stationary applications. This is attributed to their significant advantages in terms of safety and cost-effectiveness, in addition to high performance. Especially, acid-based ARBs stand out as a compelling substitute due to the accelerated proton kinetics resulting from their minimal ionic mass and diminutive radius,[1] distinguishing them from their neutral[2] and alkaline[3][4] counterparts. Moreover, of paramount importance is the proton's ability to achieve exceptionally rapid ionic conduction in aqueous electrolytes, due to its advantageous utilization of the Grotthuss mechanism.[5]
Conventional acid-based ARBs are based on inorganic electrode materials and face significant drawbacks, including high costs of both anode and cathode material (based on rare elements) and severe active-material corrosion and/or dissolution. Moreover, using a metal anode (e.g., Pb) results in dendrite formation caused by uneven and irregular metal plating on the anode side, in addition to the formation of a thick lead (II) sulphate (PbSO4) passivation layer.[2] As a consequence, battery cycle stability is seriously impeded, possibly with short-circuit risks and safety compromises.
Recently, organic electrode materials (OEMs) are re-emerging as green and sustainable alternatives over traditional inorganic materials as they offer distinct advantages. First, they are composed of readily available and cost-effective elements (C, O, N, H). Moreover, by their distinctive ion-coordination mechanism, they can interact with different charge carriers (Li+, Na+, H+, Zn2+, etc), finding application in different battery technologies.[2] Furthermore, under acidic conditions these materials are less prone to the dendrites formation, corrosion, and/or dissolution, common issues faced by their inorganic counterparts.
Recently, we demonstrated the rapid kinetics, good electrochemical performance and excellent robustness of a new conjugated microporous polymer based on phenazine (named IEP-27-SR) in 1 M H2SO4 electrolyte.[6] Here, I will present our recent results on the use of this anode (IEP-27-SR) in combination with an electrodeposited MnO2-based cathode in a full acid battery. The full battery not only reached an impressive number of cycles (20000 at 30 C with 83% retention) but also could withstand high current densities (100 C, yet achieving 40 mAh g-1) using 2 mg cm-2 polymer mass loading anode. Moreover, in this study we could increase the polymer mass loading up to 30 mg cm-2, while keeping its content high (80 wt%) in the electrode. This enhancement contributed to a significant increase in the areal capacity of the aqueous battery up to 2.8 mAh cm–2, while maintaining a noteworthy value of 1 mAh cm- 2 even under the extreme high current of 79.6 mA cm-2. This porous polymer//MnO2 battery offers a sustainable and cost-effective alternative to the conventional acidic battery (e.g., PbO2 / / Pb), without compromising its performance, paving the way toward practical and sustainable energy storage solutions.
Authors thank the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant agreement (Grant No 860403) and Spanish Government; MCIN/AEI/10.13039/501100011033/FEDER “A way of making Europe” (PID2021-124974OB−C21) for the funding. N. P. appreciates fellowship IJC2020-043076-I−I funded by MCIN/AEI/0.13039/501100011033 and by the European Union NextGeneration EU/PRTR. We thank the financial support from European Union's Horizon 2020.