Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.244
Publication date: 18th December 2023
Wide bandgap semiconductors are well-known active materials in photo-driven processes. Howbeit, a specific class of nanocrystals (NCs) made of doped metal oxides stands out among the others for an additional degree of manipulation of the light–matter interaction.[1] Such nanomaterials can increase their charge density upon absorbing photons above the bandgap.[2] This photo-doping effect occurs primarily thanks to illumination and can induce an accumulation of electrons, as for the case of Tin doped Indium Oxide (ITO) nanoparticles.[3] The possibility to access such excess of charges can open the way for many different applications in light-based technologies like solar batteries or photo-electro-catalysis.[4] In order to promote such a phenomenon, the material must be able to delocalize the charges and neutralize those of opposite sign. In the work herein presented, we investigated the ITO NCs photo-doping with the aim of supporting and enhancing it with opportune counterparts acting as hole-scavenger.[5,6] By means of spectroscopic analysis we explored reversible charge transfer with redox mediators and demonstrated improved stability thanks to electron donating graphene quantum dots. We further studied the ITO NCs in the form of thin films and in particular the photo-electrochemical response under the influence of the light-driven charging of the ITO-based electrodes. With this paper, we give an overview over our recent achievements in the field.