Enhanced Electrocatalytic Performance for Oxygen-Involving Reactions by Geometric Distortion Effect of Ni-Based Catalysts
Min Hyung Lee a, Jae Ryeol Jeong a, Da Kyoung Jung a, Min Ho Kim a, Song-Ho Byeon a
a Kyung Hee University, Dongdaemoon-ku, Seoul, 130, Korea, Republic of
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
#MatInter - Materials and Interfaces for emerging electrocatalytic reactions
Barcelona, Spain, 2024 March 4th - 8th
Organizers: Marta Costa Figueiredo and María Escudero-Escribano
Oral, Min Hyung Lee, presentation 203
DOI: https://doi.org/10.29363/nanoge.matsus.2024.203
Publication date: 18th December 2023

Carbon materials, such as graphene and carbon nanotubes (CNTs), are frequently incorporated to develop multifunctional electrocatalysts for energy conversion reactions, such as water oxidation and reduction, and oxygen reduction reactions, etc. Many studies have reported that the enhanced catalytic performance resulting from the introduction of carbon materials is primarily attributed to their conductivity, which improves charge transfer kinetics compared to pristine electrocatalysts. In this presentation, we synthesized nanosheet-shaped Ni-based catalysts on CNTs and achieved comparable or even superior catalytic performance to those of the well-develpoed noble catalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Through systematic analyses and DFT calculations, we discovered that the distortion of Ni active sites induced by the CNT support is the main factor contributing to improved OER and ORR performance. Utilizing this bifunctional catalyst, we also successfully achieved Zn-air batteries with high capacity and extended cyclability. The local structural distortion induced by interfacial charge transfer contributes to tunable catalytic activity that opens an avenue for design of low-cost and multifunctional catalysts and extends its applications in the fields of clean and renewable energy.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info