Perovskite-Organic Tandem Solar Cells
Thomas Riedl a
a University of Wuppertal, Institute of Electronic Devices and Wuppertal Center for Smart Materials & Systems, 42119 Wuppertal, Alemania, Wuppertal, Germany
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
#PerTanCell - Perovskite Tandem Solar Cells
Barcelona, Spain, 2024 March 4th - 8th
Organizers: Kai Brinkmann and Felix Lang
Invited Speaker, Thomas Riedl, presentation 178
DOI: https://doi.org/10.29363/nanoge.matsus.2024.178
Publication date: 18th December 2023

Halide perovskites overwhelmed the field of photovoltaics with unprecedented progress in efficiency. Their facile bandgap tunability renders perovskite solar cells excellent building-blocks for multi-junction architectures, that provide the prospect to overcome fundamental efficiency limits of single-junctions. Combinations of perovskite wide-gap cells exist with a large variety of narrow-gap technologies, such as silicon or CIGS. Furthermore, low-cost tandem technologies are particularly interesting, such as all-perovskite tandems. However, stability concerns exist especially for narrow-gap perovskite cells, that typically contain large amounts of tin (instead of lead). The notorious oxidation of the Sn2+ to Sn4+ infers a detrimental self-doping [1]. Since this issue might impose a fundamental stability limit, organic solar cells are an attractive alternative as a narrow-gap subcell to form perovskite/organic tandems. Since the introduction of non-fullerene acceptors has revived the field, organic solar cells now reach efficiencies >19% and express absorption spectra extending well into the infrared. Organic and perovskite semiconductors share similar processing technologies, which makes them attractive partners in multi-junction architectures. I will discuss the prospects and challenges of perovskite-organic tandem solar cells by highlighting the key aspects of the individual building blocks and their interplay in the tandem. Specifically, the role of non-fullerene acceptors in efficient narrow-gap organic solar cells with high operational stability is discussed. A further focus is the wide-gap perovskite solar cell, where long term stability is the most pressing issue that needs attention. Eventually, the design and functionality of high-quality interconnects are outlined along with a view on its impacts on the characteristics of the tandem. I will present a specific example of a perovskite/organic tandem using an ALD grown InOx interconnect yielding a very promising efficiency of 24% with prospects reaching well beyond 30%.[2] In the end, I will benchmark perovskite-organic tandem solar cells against other emerging tandem solar cell technologies.

We acknowledge the Deutsche Forschungsgemeinschaft (DFG) (within the SPP 2196: grant numbers RI 1551/15-1, RI 1551/12-1; individual grant numbers: RI 1551/18-1, RI 1551/4-3, RI 1551/7-2 and HE 2698/7-2), the Bundesministerium für Bildung und Forschung (BMBF) (grant number: 01DP20008) and the Bundesministerium für Wirtschaft und Energie (BMWi) (grant number: ZF4037809DF8) for financial support. The research leading to these results has received partial funding from the European Union’s Horizon 2020 Programme under grant agreement no. 951774 (FOXES).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info