Recent Insights on Carrier Transport and Localization in Metal Oxide Photoabsorbers
Roel van de Krol a b
a Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
b Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 124, 10623 Berlin, Germany
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
#PhotoMat - Advances in Photo-driven Energy Conversion and Storage: From Nanoscale Materials to Sustainable Solutions
Barcelona, Spain, 2024 March 4th - 8th
Organizers: Michelle Browne, Bahareh Khezri and Katherine Villa
Invited Speaker, Roel van de Krol, presentation 174
DOI: https://doi.org/10.29363/nanoge.matsus.2024.174
Publication date: 18th December 2023

Metal oxide photoelectrodes tend to be cheap, easy to fabricate, and show relatively good (photo)chemical stability in aqueous solutions. This makes them attractive candidates as light absorbers in a variety of photoelectrochemical and photocatalytic applications. However, the efficiencies of these absorbers are poor compared to photovoltaic-grade materials. This is usually attributed to polaron formation and recombination or trapping at defects. To determine the quality of metal oxide absorbers, time-resolved photoconductance measurements are often used as a convenient and contact-free method to determine the carrier diffusion length. Here, one of the main challenges is to determine whether the decay in photoconductivity is due to a decay in carrier concentration (recombination), a decay in carrier mobility (trapping, polaron formation), or both. I will present a general analysis method for determining the diffusion length which is valid for time-dependent mobilities as well as time-dependent lifetimes [1]. We have applied this method to a range of metal oxides and validated the method by applying it also to crystalline silicon and a halide perovskite. We find a carrier diffusion length of only 15 nm for BiVO4, which is significantly shorter than previously reported values by us and others. I will discuss how this value can be reconciled with the relatively high photocurrents that many groups have reported for this material. For several other oxides that we studied, we find evidence for nm-scale carrier localization [2], which is likely due to nano-sized crystallites or defect clusters. Mitigation of this strong localization may be possible and would offer a promising strategy for designing more efficient metal oxide-based photoelectrodes.

This work was carried out within the Helmholtz International Research School “Hybrid Integrated Systems for Conversion of Solar Energy” (HI-SCORE), an initiative co-funded by the Initiative and Networking Fund of the Helmholtz Association (HIRS-0008).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info