Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.173
Publication date: 18th December 2023
In organic solar cells, the charge-transfer (CT) electronic states are crucial in the charge-generation process, significantly influencing the overall device performance. They are formed at the interface between the electron-donor (D) and electron-acceptor (A) material, which usually exhibit significant electric fields.
In this study, we use a dedicated D-A system to tune intrinsic and extrinsic interface electric fields. It consists of two doped organic layers on top of each other, forming a planar organic p-n junction. By applying increasing voltages up to 6 V and introducing different thicknesses of intrinsic layers between 0 nm and 20 nm at the interface, the electric field at the interface can be deliberately varied. We observe substantial shifts in the CT-state peak emission, approximately 0.5 eV (150 nm), causing a transition from red to green color. This effect can be explained in a classical electrostatic picture, as the interface electric field superimposes the Coulomb interaction between the electron-hole pair. Our investigations illustrate the extent to which CT-state energies are influenced by their immediate electric environment. While CT state energy is often referred to as a fixed quantity, we want to emphasize that this understanding needs to be revised, especially for planar systems with a high degree of interfacial dipole alignment.