Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.168
Publication date: 18th December 2023
Thin-film PV is a key technology for low cost and low environmental impact solar energy conversion. Metal halide perovskites are leading among thin film PV technologies, but challenges remain regarding toxicity of Pb and stability. Motivated by the search for low cost, non-toxic and Earth abundant materials solutions for thin film PV, new inorganic semiconductors with complex compositions are being explored. One of the challenges with material discovery and new material compositions, is their fabrication in thin film form. Challenges such as volatility incompatibility or solvent incompatibility, hinders progress in either high quality material demonstration or functionality via device integration.
In this presentation, we will discuss how the combination of mechanochemical synthesis and pulsed laser deposition (PLD), allows the exploration of novel Earth abundant and non-toxic semiconductors materials. We will explore the development, growth and understanding of semiconductor materials such as Pb-free double perovskites (e.g. Cs2AgBiBr6), new photoactive light-absorbers such as Ag3SI and p-type transparent electrodes such as S-doped and Cs-doped CuI.
In summary, the presentation will highlight how controlled synthesis and material design can make a significant contribution to the emerging generation of efficient and sustainable thin film-based solar cell devices.