Ultrafast Localisation and Charge Carrier Dynamics in Novel Bismuth Based Perovskite Inspired Materials
Snigdha Lal a, Marcello Righetto a, Aleksander Ulatowski a, Silvia Motti b, Benjamin Putland a, Harry Sansom a, Michael Johnston a, Henry Snaith a, Laura Herz a, Robert Hoye c, Judith Driscoll d, Zhuotong Sun d
a Department of Physics, University of Oxford, UK
b School of Physics & Astronomy, University of Southampton, SO17 1BJ, Southampton, United Kingdom
c Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
d Department of Material Science and Metallurgy, University of Cambridge, Charles Babbage Road, 27, United Kingdom
Materials for Sustainable Development Conference (MATSUS)
Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
#NextGenSolar - Innovations beyond ABX3 perovskites: Materials development, Photophysics, and Devices
Barcelona, Spain, 2024 March 4th - 8th
Organizers: Silvia Motti and Marcello Righetto
Oral, Snigdha Lal, presentation 157
DOI: https://doi.org/10.29363/nanoge.matsus.2024.157
Publication date: 18th December 2023

Following the emergence of lead halide perovskites (LHPs) as materials for efficient solar cells, research has progressed to explore stable, abundant and non-toxic alternatives. However, the performance of such lead-free perovskite-inspired materials (PIMs) still lags significantly behind that of their LHP counterparts. For bismuth (Bi)-based PIMs, one significant reason is a frequently observed ultrafast charge-carrier localization (or self-trapping). It has been suggested that self-trapping in Cs2AgBiBr6 originates from strong lattice deformation potential imparted by bismuth along with the presence of soft silver-halide bonds. Given that self-trapping places a fundamental limit on the performance of materials, investigating the influence of chemical composition on the charge-carrier dynamics is highly topical.

This work aims to understand whether the presence of Bi or Ag-halide bonds is in fact crucial to the emergence of self-trapped states. This was done through a dual study of charge-carrier dynamics in BiOI and (AgI)x(BiI3)y thin films. Our investigation reveals that despite possessing a low and strong electron-phonon coupling, there is no ultrafast localisation in BiOI. Instead, by unravelling the early and long-time charge-carrier dynamics in BiOI, we find that the material performance is limited by the presence of multi-phonon emission mediated non-radiative channels in the material.

On the other hand, ultrafast localisation is persistent across both mixed Ag-Bi iodides and BiI3. Thus, the presence of Bi and/or Ag-halide bonds alone cannot account for self-trapping in these materials. We find that a delicate interplay between chemical composition and crystal and band structures determine the charge-carrier dynamics in (AgI)x(BiI3)y. Overall, our dual study addresses crucial gaps in understanding the limitations of Bi-based PIMs and educate future material design.  

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info