Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.154
Publication date: 18th December 2023
Two-dimensional (2D) organic-inorganic metal halide perovskites are persistently emerging as a promising class of semiconductors, not only due to their superior intrinsic and extrinsic stability but also due to their virtually endless compositional possibilities. Especially the versatile organic cations offer many options to study the underlying physics of these materials as well as to modify key properties on a device and application oriented research path. Looking for more stable and less toxic alternatives to 2D Pb-based perovskites, double perovskites based on Ag, Cu, Bi and Sb are at the focus of the most recent research efforts.
We synthesized 2D n=1 Ruddlesden-Popper double perovskite based on large, conjugated cations, creating different types of band gap alignments to break the quantum confinement of the 2D layered crystal structure. We discuss the structural and optical properties, the photoluminescence, the electronic structure, the charge-carrier mobilities and the mixed- and out-of-plane conductivities for 8 new materials. We isolate the most promising organic cation and successfully incorporate it into the first pure n=1, parallel oriented, 2D RP double perovskite solar cell.