Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.103
Publication date: 18th December 2023
Layered perovskites are quasi-twodimensional crystals in which n layers of metal-halide octahedra are spatially separated by organic molecular layers. A wide variety of organic molecules can be used in the fabrication of these materials, allowing for variation of the interlayer distance and orientation, as well as functionalization, for example by introduction of chiral or electroactive organic molecules. Furthermore, chemical substitution at the metal and halide sites can drastically change the band gap size and symmetry in these materials. In this talk, I will discuss how chemical substitution affects the exciton fine structure of layered perovskites, focusing on metal site substitution and different organic interlayers. Our first-principles calculations based on the GW and Bethe-Salpeter Equation approaches demonstrate the importance of chemical, structural, and dielectric heterogeneity for controlling the nature and binding energy of excitons and the need for first-principles calculations to understand the electronic and excited state structure of this complex material class.