Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.093
Publication date: 18th December 2023
Over the past decade, metal halide perovskites (MHP, CsPbX3: X = Cl, Br, I) have been widely investigated as promising materials for optoelectronics, achieving a record-breaking efficiency in solar cells.[1] From a fundamental point of view, MHP could be excellent candidates for photocatalysis due to their high photogenerated charge-carrier production and mobility as well as their narrow and tunable bandgap energy.[2] MHP with tuneable bang-gap energy could be obtained through fast substitution of bromide by iodine or chloride (CsPbBr3-yXy : X = Cl, Br, I).[3]
In this presentation, the electronic properties of MHPs were encapsulated by TiO2, and their electronic properties were tuned by anion substitution at room temperature. Then, charge-carrier lifetime and dynamics were investigated in CsPbBr3-yXy along with interfacial electron transfer from CsPbBr3-yXy to TiO2 by means of time-resolved photoluminescence (TRPL) and transient absorption spectroscopy (TAS). The results show that the bandgap engineering and the position of the conduction band and valence band level in both materials are detrimental for optimal interfacial charge transfer. In addition, the optimal bandgap configuration for the most efficient charge injection positively affects the photocatalytic activity. The encapsulation of MHPs by TiO2 did improve the stability for hydrogen generation from aqueous solution.