Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.092
Publication date: 18th December 2023
IRENA estimates that 70 million tonnes PV waste will have been generated by 2050. Furthermore, we are already seeing challenges in the supply chains of critical materials for renewable energy and electronics. Emerging solar technologies involve printable devices which have low embedded energy and are fully recyclable at the end of their life. Using recycled materials in these devices could lead to further enery savings and reduced environmental impact, as well as providing a versatile, low cost technology for clean energy. We present the outcomes of a proof-of-concept to provide data to assess the potential for printable electronic, electrochemical and photovoltaic devices using waste materials. Carbon black has numerous applications, but production leads to 2.4 kg CO2 emissions per kg virgin carbon black. Our project seeks to identify opportunities for the recycled carbon black as a higher-value product in electronic and electrochemical devices, such as printable photovoltaics. Most current research into printable solar cells using the triple mesoscopic stack configuration uses commercial carbon inks which is based on virgin carbon black. We have developed conductive inks from recovered carbon black from waste tyres, tested them in devices (indoors and outdoors) and then shown that the device itself can be regenerated and re-used.
We thank the UKRI NICER programme and EPSRC for funding, and Wastefront for a fruitful collaboration.