Proceedings of MATSUS Spring 2024 Conference (MATSUS24)
DOI: https://doi.org/10.29363/nanoge.matsus.2024.079
Publication date: 18th December 2023
The conversion of low-energy light into photons of higher energy based on sensitized triplet–triplet annihilation (sTTA) upconversion in bicomponent systems is emerging as the most promising wavelength-shifting methodology to recover sub-bandgap solar photons, because it operates efficiently at excitation powers as low as the solar irradiance. Excellent efficiencies have been obtained in liquid environments as well as in prototype upconversion enhanced solar cells, but the research is still focused on the realization of affordable solid states upconverters suitable to be implemented in current solar technologies. We show here that controlled confinement of the upconverting materials in nanostructured or nanosized materials can improve the material performance at low powers. [1] [2] [3] [4] The result presented will show demonstrate how this strategy can represent a crucial guideline for the future development of upconverting photonic devices operating at subsolar irradiances suitable for technological implementation.
[1] Mattiello et al. Diffusion-free intramolecular triplet–triplet annihilation in engineered conjugated chromophores for sensitized photon upconversion. ACS Energy Letters 7 (8), 2435-2442 (2022)
[2] A.Ronchi & A. Monguzzi; Developing solid-state photon upconverters based on sensitized triplet–triplet annihilation. J. Appl. Phys. 129 (5), 050901 (2021)
[3] Saenz et al. Nanostructured Polymers Enable Stable and Efficient Low‐Power Photon Upconversion, Adv. Funct. Mater. 31, 1, 2004495 (2021)
[4] Meinardi et al. Quasi-thresholdless photon upconversion in metal–organic framework nanocrystals, Nano Letters 19 (3), 2169-2177 (2019)